Lessons From US Watershed Investment Programs

ALSO IN THIS ISSUE:
Drought-Proofing Water Pump Stations for Critical Infrastructure
Reclaiming Water to Rehydrate Wetlands in Panama City Beach
Using Fluorescence for Biological and Membrane Filter Performance Monitoring
Discussing WIFIA’s Structure and Effects
Feature Articles

30 Protecting Drinking Water at the Source: Lessons From US Watershed Investment Programs

Watershed investment programs that connect downstream water users with upstream landowners are proving to be a successful way for multiple stakeholders to work together on source water management. Case studies of 13 programs were examined in collaborative research to identify the programs' common characteristics. Forest restoration and management is a key element.

Todd Gartner, Kara DiFrancesco, Suzanne Ozment, Heidi Huber-Stearns, Nathaniel Lichten, and Sylvia Tognetti

42 Safe Drinking Water: Lessons From the Other Side of the Atlantic

This article explores the EU’s guidelines and standards for safe drinking water, highlighting major differences from the regulatory approach taken by the United States through an examination of how each has responded to arsenic.

Francesca Spagnolo and Eloisa Cristiani

50 Drought-Proofing Water Pump Stations for Critical Infrastructure

Longer and more intense periods of drought are drying up groundwater aquifers in many populous areas across the globe. This article describes five strategies for addressing low water level concerns and designing or modifying raw water pump stations to enhance their ability to operate during challenging drought conditions.

Andrew E. Johansson, David G. Schowalter, Joseph Orlins, and Mizan Rashid

55 Reclaiming Water to Rehydrate Wetlands: Panama City Beach’s Conservation Park

Restoration of wetlands and creation of a conservation park allowed a wastewater treatment facility in Florida to address wastewater disposal issues and expand the facility's treatment capacity for future development. In addition, the park has become a popular recreational and educational destination.

William D. Masser and Michael E. Bomar

64 Pages From the Past: Experience in Handling Bad Water Complaints and Laboratory Control

A look back at a foundational article that was originally published in Journal AWWA in March 1917 (Vol. 4, No. 1, pp. 62–64).

Earl T. Kirkpatrick

On the cover: With threats to drinking water supplies on the rise, providers are realizing the benefits of watershed investment programs. A recent study examined 13 such programs and focused on protecting source water through forest management.

Write for the Journal

Journal AWWA is currently seeking peer-reviewed and feature articles. Find submission guidelines at www.awwa.org/submit.
Reclaiming Water to Rehydrate Wetlands: Panama City Beach’s Conservation Park

As a consequence of a consent order, future development in Panama City Beach, Fla., was limited because the existing wastewater treatment facility (WWTF) would not be able to serve future needs until the growing concerns about the disposal of treated wastewater into sensitive estuarine waters was addressed. Through innovative approaches and progressive collaboration, a public-private partnership was formed that addressed the consent order, which ultimately resulted in a new regional conservation park. The city was then able to reuse 100% of its treated wastewater and provide future growth opportunities for the development community.
Panama City Beach is a city of more than 12,000 residents (United States Census Bureau 2010) in Florida’s southern panhandle on the northern coast of the Gulf of Mexico. With an additional 5,000 tourists and winter residents, the city’s wastewater flows and reuse requirements are highly variable. The city is served by one WWTF located between the West Bay of Saint Andrews Bay and the Gulf of Mexico (Figure 1). In 2000, the WWTF was treating approximately 7 mgd of wastewater on a maximum monthly average daily flow (MMADF). Approximately 50% of treated wastewater was reused through public-access irrigation of open space such as city parks, public rights of way, and golf courses. The remaining treated effluent was sent to an approximately 1-mi-long freshwater ditch near the WWTF that ultimately discharges into West Bay. The state of Florida classifies West Bay as Class II waters, which includes coastal waters where shellfish harvesting occurs. West Bay is also part of the diverse but fragile Saint Andrews Bay ecosystem, with more than 2,900 species of documented plants and animals (Keppner 2002).

The WWTF is required to meet advanced treatment quality effluent limits of 5 mg/L carbonaceous biochemical oxygen demand; 5 mg/L suspended solids; 3 mg/L TN (total nitrogen); and 1 mg/L TP (total phosphorus). The city was allowed to continue discharge into West Bay as part of an agreed-upon consent order with a stipulation that surface water disposal cease by April 2011.

The consent order requiring the city to stop effluent disposal to West Bay was based on growing environmental concerns at both the local and state levels over the amount of nutrients discharged into the estuary and that ultimately flowed to the Gulf of Mexico. In addition, the US Fish and Wildlife Service and Florida Department of Agriculture closed a portion of West Bay to shellfish harvesting because of the surface water discharge from the WWTF.

REGULATING REUSE IN FLORIDA

The Florida Department of Environmental Regulation (FDEP) is the regulatory authority that administers permits for the treatment and disposal of domestic and industrial wastewater. Wetlands used to treat domestic wastewater are governed by the rules of the Florida Administrative Code (FAC) under rule number 62-610 (Florida Department of State 2010). When wetlands are used as part of the treatment or disposal of wastewater, the FDEP considers the wetlands as either natural or man-made (created). Projects using natural wetlands in the FAC are categorized as either receiving wetlands or treatment wetlands, and additionally as either hydrologically altered or nonhydrologically altered. The ultimate categorization affects the design criteria of the wetland system, threshold limitations, and opportunities or constraints for any beneficial uses. Figure 2 summarizes

In 2012, the FDEP indicated that Florida had 21 facilities with permitted man-made wastewater wetland treatment systems (4,000 acres) and 17 facilities using natural wetlands (6,200 acres); likewise, 10 natural wetlands were permitted (5,350 acres) compared with only two permitted man-made treatment wetlands (286 acres) (FDEP 2012).

From Figure 2, hydrologically altered wetlands were of particular interest to the city; these wetlands can be hydrated to restore or prevent potential loss of wetland acreage. Use of a hydrologically altered wetland or creating wetlands for effluent polishing are both considered reuse of reclaimed water activities according to FAC 62-610.

In addition to intensifying regulatory, community, and environmental pressures, a company with major local land ownership in Panama City Beach historically associated with the timber industry was shifting to a real estate development company with a focus to develop local timber lands. The city's WWTF did not have the capacity to handle the anticipated flows for this future development. With the agreed-upon consent order, discharge into West Bay was not an option. Public and private interests brought stakeholders together to identify a mutually beneficial solution to eliminating surface water effluent disposal, reusing wastewater effluent, providing wet-weather disposal, restoring hydrologically altered wetlands, and expanding the WWTF's treatment capacity for new development.

A UNIQUE OPPORTUNITY

Not all public entities are fortunate enough to have large, undeveloped areas within city limits that contain disturbed and/or altered wetland areas; thus, many of Florida's sites attempt permitting as treatment wetlands. Panama City Beach was fortunate to be offered a large area of disturbed wetlands, with a landowner who was willing to work with the city.

The timber company owned undeveloped property in the surrounding area and offered to sell a large tract of land to the city. The property was of little economic use for future development and contained many acres of disturbed jurisdictional wetlands that had been significantly altered. Historic uses in the area included native longleaf pine (*Pinus palustris*) logging, subsequent slash pine agriculture (i.e., forest cultivation), and turpentine farms. Man-made ditches were excavated in this area to lower the groundwater table and remove ponding to allow easier site access for equipment and facilitate more conducive growing conditions for slash pine.

In 2005, the city purchased 2,900 acres from the timber company, consisting of 2,072 acres of jurisdictional wetlands with significant impacts and 828 acres of associated uplands with various historic impacts. Figure 1 indicates the relationship between Panama City Beach, its WWTF, West Bay, and the receiving wetlands site. Baseline monitoring reports identified historic uses at the site and surface drainage practices to lower the water table, which would convert more hydric pine flatwoods to a mesic (drier/moderately moist) condition. Species composition showed that the drying condition promoted loss of cypress trees in formerly deeper water habitats and loss of longleaf pine in formerly mesic flatwoods. The dominant vegetation at the time of the proposal had changed to black titty and slash pine. In addition, historic aerial photo documentation showed ditch dredging occurring in the 1960s on the site, and the FDEP confirmed that the area had more than 2,000 acres of hydrologically altered jurisdictional wetlands and thus

![Image not available]

The city's wastewater treatment facility did not have the capacity to handle the anticipated flows for future development.

The project area also afforded the opportunity for other public beneficial uses beyond polishing reuse effluent and improving the water quality of West Bay. The city elected to take this vast, now publicly owned area.
Clearly marked public trails through the conservation park include boardwalks that lead into areas that the public would otherwise be unlikely to see.

and provide opportunities for public outreach, education, and recreation. The infrastructure and facility design incorporated a multiuse approach to maximize the benefit of the land.

For example, the alignment of the 5 mi of force main to convey the reuse water to the site from the WWTF would also be used as a paved bike trail. The control building with reuse piping and valve manifold doubled as a public restroom and shelter. The treatment cell berms doubled as pathways with more than 2.5 mi of hiking and biking trails. New boardwalks through deep cypress domes offered the public seldom-seen perspectives of the natural environment (see the photographs on this page). Several kiosks provided information about habitat restoration through wetland rehydration, selective thinning, prescribed burning, longleaf pine and wiregrass (Aristida stricta) seedling plantings, and other important features of the park. They included descriptions of the historic use of the lands, ongoing restoration and rehydration activities, and future conservation of the property (see the photograph on page 59).

PERMITTING

Project permitting required hydrologic and ecologic monitoring to create a preconstruction baseline. Site water quality samples were taken from inside the headwaters of the wetland area within the centrally located drainage ditch and from the monitoring stations at the point of discharge from the entire wetland system. Table 1 provides analysis of the water quality parameters most relevant to the necessary permits measured before project implementation and their upper limits after receiving reuse water.

The investigation also included the wetlands’ species composition during the baseline monitoring period and afterward. Ongoing annual monitoring is required for woody vegetation, whereas herbaceous vegetation was required to be monitored only for the first three years but on a quarterly basis. The baseline monitoring occurred at four stations within the wetlands. Because of the previous site owner’s surface water drainage practices, the wetland areas exhibited a juxtaposition of both wetland and upland species. In fact, before construction of the conservation park, the four most common woody species encountered throughout the baseline survey were an upland species, a facultative species, and two facultative wet species as classified by the US Army Corps of Engineers. Although obligate wetland species were also encountered as expected in onsite wetlands, they were far less common than historic aerials and records had indicated. Thus, the shift in wetlands composition to species tolerating drier conditions would provide opportunities in the treatment cells to rehydrate the wetlands with reuse water.

TABLE 1 Water quality parameters measured before construction of Panama City Beach conservation park

<table>
<thead>
<tr>
<th>Water Quality Parameter</th>
<th>Sampled (Preconstruction) mg/L</th>
<th>Reuse Maximum Allowed mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Five-day CBOD</td>
<td>2–3</td>
<td>5</td>
</tr>
<tr>
<td>Total suspended solids</td>
<td>1.6–2</td>
<td>5</td>
</tr>
<tr>
<td>Total nitrogen (TN as N)</td>
<td>0.20</td>
<td>3</td>
</tr>
<tr>
<td>Total phosphorus (TP as P)</td>
<td><0.20</td>
<td>0.8</td>
</tr>
</tbody>
</table>

CBOD—carbonaceous biochemical oxygen demand

DESIGN AND CONSTRUCTION

To use the conservation park site, the treated reuse water had to be
collected, conveyed, and distributed on the basis of a complex rehydration schedule matched to three separate design phases of flows. Thus, design and construction was required at the existing WWTF, along an elevated power line corridor to the wetlands, at a central distribution point (control building), and in and around each polishing cell of the wetland tract.

The WWTF required modifications, including determining where to extract the reuse water from the plant. The WWTF was operating at 7 mgd (MMADF), but the buildout potential of the WWTF was based on three phases of development—phase 1 to increase capacity to 10 mgd, phase 2 to 14 mgd, and phase 3 to 18 mgd (ultimate buildout). The reuse transmission line was sized for the ultimate flow of 18 mgd and required construction of 5 mi of 36-in. ductile iron pipe to the receiving wetland site. Given the range of expected flows, it was thought that the lower velocities during early phases could potentially facilitate algae growth in the transmission main. Thus, the reuse water intended for the wetland was intercepted upstream of the existing WWTF dechlorination system to ensure a chlorine residual, but a dechlorination system was installed at the wetland site to remove any chlorine residual before discharge.

The WWTF’s new pumping complex accommodated a 32-mgd hex-plex of pumps with backup generators and a variable-flow-device control building. The parking area for this new facility doubled as an additional parking lot and trail head for the public use of the paved bike trail and connection to the city’s trail system.

A 2003 evaluation of the existing wetlands established the composition, function, and value of each habitat. In addition, an evaluation of the surface drainage basins determined opportunities for isolating treatment cells. All of the basins were interconnected through various surface water interactions that ultimately drained to the northernmost basin, where an existing outfall ditch excavated by the logging industry the maximum volume it could contain and to estimate both the historic and existing hydroperiods of the main wetland habitat at the bottom of each cell basin. Although many of the wetlands historically had wet-season loading depths as deep as 18 to 24 in., existing ditches cut to drain the property for lumbering practices rendered many of the wetland systems unable to retain any appreciable standing water. In effect, much of the existing hydroperiod loading depths were 0 to <6 in. Even with the improved hydraulic loading of the cells from the reuse discharge and with proposed improvements to cells to make containment berms, some of the cells’ proposed loading depths would still be less than their historic ranges. Still, the new loading rates were a significant increase in surface

Panama City Beach was fortunate to be offered a large area of disturbed wetlands, with a landowner who was willing to work with the city.

carried away excess surface water from the entire system. This was a major contributor to the hydrologically altered state of the wetlands within the receiving areas.

Each hydrologic drainage basin and its corresponding wetland storage area was evaluated to determine water addition, and significant hydrological restoration was expected in each cell. Each wetland cell needed to control the applied reuse effluent to maximize storage capacity for the WWTF while attempting to restore the hydroperiods of the wetlands. In
most cases, the existing basins had topographic boundary lines that would contain the surface storage. Select areas needed raised control berms to control the flow of water within the cells (see the left-hand photograph on this page).

Modeling surface water storage routings of the rainfall hydrographs for various storm events ensured that the City of Panama City Beach understood the risks of overtopping a containment berm. Erosion protection for future development impacts. The benefit of restoration and/or enhancement of more than 2,000 acres of hydrologically altered wetlands far exceeds the necessary loss of a few acres of wetlands to make the berms. After proper stabilization, the tops of the berms were used for public recreation by expanding bike trails and hiking paths around the perimeters of the receiving cells, allowing the conservation park to provide wildlife viewing. The transmission line connects to the headworks of the wetland receiving system at the control building and water distribution center. The front of the facility is an aesthetically pleasing public building, with a trail for recreational use and public restrooms by the public parking lot. The back half of the building contains the controls and piping for the reuse water distribution system and the space needed for operations and maintenance, including the dechlorination system and generator.

The control center’s automated pumps convey water to one of four polishing cells. To spread water into the cells without causing erosion, a combination of flow control boxes with gates and intake structures was constructed, including the necessary means of dissipating the outflow water velocity into the spreader swales at each cell location, as shown in the right-hand photograph on this page.

OPERATION AND MAINTENANCE
During the period that the lands were primarily used for silviculture, a significant amount of native longleaf pines were grown and harvested in the area. Fast-growing slash pines were densely planted in replacement of upland and wetland habitat. Several prudent ecological activities were incorporated into the project: tree harvesting, invasive plant thinning, native tree and wiregrass seedling planting, and prescribed burning.

The site’s usable uplands originally contained longleaf pines; after these were harvested, the
partially drained wetlands were often replanted with fast-growing slash pines at densities that in some cases restricted or eliminated sunlight from reaching potential groundcover species. The densely packed pine trees also eliminated the natural habitat’s diversity. Selective tree thinning performed in these areas promotes more natural community distribution and sunlight penetration, allowing the development of subcanopy species and herbaceous plants. In addition, slash pine areas within the park were harvested to generate revenue for Panama City Beach.

Along with tree thinning and harvesting, a prescribed burning regimen was introduced to remove excessive buildup of organic detritus that can lead to devastating fires. Restoring periodic fires to the plant community has promoted growth of native wiregrass and longleaf pine communities that depend on fire to stimulate germination, has provided additional sunlight through the canopy, and has opened serotinous pine cones for seed dispersal. With the modified uplands now thinned and/or burned, the city planted wiregrass and longleaf pine and can accommodate future growth. Nutrient concentrations have been tracked in the effluent leaving the WWTF and at the discharge point from the conservation.

With the conservation park fully implemented, Panama City Beach’s wastewater treatment facility no longer discharges wastewater effluent into the West Bay of Saint Andrews Bay.

RESULTS
With the conservation park fully implemented, Panama City Beach’s WWTF no longer discharges wastewater effluent into the West Bay of Saint Andrews Bay. The city now reuses 100% of its treated effluent park outfall for more than five years; these concentrations show that nutrient levels following the polishing within the receiving wetlands are 25 to 50% below those observed in the WWTF effluent.

Figure 3 shows the effect of the wetlands by comparing the TN in the WWTF effluent with the TN leaving the final polishing cell in the conservation park, where the maximum permitted TN from the WWTF.

FIGURE 3 Comparison of total nitrogen leaving the WWTF and total nitrogen leaving the conservation park

<table>
<thead>
<tr>
<th>Date</th>
<th>Total Nitrogen Measured as N—mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/1/2011</td>
<td>9.0</td>
</tr>
<tr>
<td>7/1/2011</td>
<td>8.0</td>
</tr>
<tr>
<td>8/1/2011</td>
<td>7.0</td>
</tr>
<tr>
<td>9/1/2011</td>
<td>6.0</td>
</tr>
<tr>
<td>10/1/2011</td>
<td>5.0</td>
</tr>
</tbody>
</table>

** WWTF—wastewater treatment facility **
is 3.0 mg/L. Likewise, Figure 4 compares the TP discharged from the WWTF and leaving the conservation park, where the permitted limit on TP is 0.8 mg/L. Although any particular day may have exceeded the WWTF discharge limit, the average TN leaving the plant on a monthly and quarterly basis was always within permitted limits; only once has the TP exceeded the limit on a quarterly basis.

Mitigation of the incidental impacts on wetlands to create berms included ongoing monitoring using the uniform mitigation assessment method (UMAM) to verify that the mitigation is providing the required ecological lift. Monitoring as part of the operational period resulted in improved UMAM scores in the required areas.

During this project’s 10 years of planning and design, over 20 briefings were provided to the city council at public meetings, and more than 10 public meetings and presentations were given to conservation groups and regulatory agencies. During construction, since the opening of the park, the city has documented the site’s historic use as a turpentine farm and celebrated the site’s impact as a regional conservation area. As a result of the creation of Panama City Beach’s conservation park, the city has created over 25 mi of multi-purpose bike and hiking trails, including two publicly accessible trails. The conservation park has been a great success and has become a destination for bird watchers and outdoor enthusiasts.

As a result of the creation of Panama City Beach’s conservation park, the city has created over 25 mi of multi-purpose bike and hiking trails, including two publicly accessible trails.

ABOUT THE AUTHORS

Since 1992, William D. Musser has been a vice-president with Tetra Tech, 201 E. Pine St., Ste. 1000, Orlando, FL 32801 USA; william.musser@tetratech.com. He is a professional engineer, professional hydrologist, and professional wetland scientist. He has been...